The structure of products of reaction of o-phenylenedioxytrichlorophosphorane with arylacetylenes

V. F. Mironov, ** T. A. Zyablikova, * I. V. Konovalova, * M. G. Khanipova, * and R. A. Musin*

^aA. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center of the Russian Academy of Sciences, 8 ul. Akad. Arbuzova, 420083 Kazan', Russian Federation.

Fax: 007 (843 2) 75 2253

bV. I. Ul'yanov-Lenin Kazan' State University,
18 ul. Lenina, 420008 Kazan', Russian Federation.
Fax: 007 (843 2) 38 0994

The products of reaction of o-phenylenedioxytrichlorophosphorane with arylacetylenes were identified as 4-aryl-2-chloro-2-oxo-5,6-(4-chlorobenzo)phosphorin-3-enes using ¹H, ¹³C, ³¹P NMR, and IR spectroscopy and high-resolution mass spectrometry.

Key words: o-phenylenedioxytrichlorophosphorane, arylacetylenes, chlorination, ipso-substitution, 2-chloro-2-oxo-4-phenyl-5,6-(4-chlorobenzo)phosphorin-3-enes.

Reaction of phenylacetylene with PCl₅ has been studied in detail.¹ Depending on the ratio of the starting compounds and temperature, phosphonium salts, phosphoranes, or derivatives of P^{III} are formed.¹⁻⁵ Reactions of phenylacetylene with phosphoranes PhCH=CHPCl₄ and PhPCl₄ are also described,^{3,6} but the structures of the adducts that are formed initially, have not been studied. Some published data indicate^{7,8} that the structures of the adducts strongly depend on the substituent type in acetylene.

We studied the reaction of phenylacetylene with o-phenylenedioxytrichlorophosphorane 1 containing a benzodioxaphospholane fragment, which effectively stabilizes the pentacoordinated state of phosphorus. Unlike PCl₅, chlorophosphorane 1 has the phosphorane structure in both polar and non-polar solvents. Compound 1 adds easily, with exothermic effect, to phenyland para-bromophenylacetylenes to give products 2a,b. The structure of compound 2a differs from that proposed earlier for the product of interaction of chlorophosphorane 1 with PCl₅.

Table I summarizes 13 C NMR spectral data of compounds 2 isolated in the crystalline state and of acid 3, the product of hydrolysis of compound 2a. The presence of a doublet of doublets at δ 115.6 with large spin-spin coupling constants ($^{1}J_{PC}=154$ and 165-172 Hz) suggests the formation of a P-CH=C fragment. Five signals of the carbon atoms, which are not connected with the protons, are observed in the spectrum of compound 2a. Three low-field signals at δ 155.82, 149.77, and 136.8 correspond to the carbon atoms C(7), C(1), and C(9). According to its chemical shift, the last signal (doublet, $^{3}J_{C(9)P}=20.94$ Hz) is similar to that of the ipso-carbon atom of the aromatic ring in styrene deriva-

2: Ar = Ph (a), 4-BrC₆H₄ (b) 3: Y = OH 4: Y = F

tives. If The cyclic structure of compound 2a is also confirmed by the multiplicity of the signal of C(6) (${}^{3}J_{C(6)P} = 15.7-18.2 \text{ Hz}$, ${}^{3}J_{C(6)H(8)} = 6.0-7.5 \text{ Hz}$, ${}^{3}J_{C(6)H(2)} = 7.5 \text{ Hz}$). An estimate of the ${}^{3}J_{C(6)P}$ value performed on the basis of published data 12 gives a value of 16 Hz for two bond channels (PCCC(6) and POCC(6)). The value of ${}^{3}J_{POCC(2)} \sim {}^{3}J_{PC=CCcis} = {}^{8}$ Hz) was used as a model. Taking into account the results published earlier 13 as well as the pattern of spin-spin coupling constants in the 1 H and 13 C NMR spectra, the signal at 6 130.41 was assigned to the carbon atom C(4) linked with the chlorine atom. Spin-spin coupling constants J_{CH} of the carbon atoms of the benzene ring were interpreted with account of the known data (${}^{2}J_{CCH} = 0-4$ Hz and ${}^{3}J_{CCCH} = 6-11$ Hz). 14

The presence of the P-CH=C fragment is also confirmed by the data from the ¹H NMR spectra of

356

Table 1. The parameters of the ¹³C NMR spectra of compounds 2a, 2b, and 3

Cl
$$x, Y = H, Cl (2a); Br, Cl (2b); H, OH (3)$$

Atom	2a		2b		3	
	δ ¹³ C	J/Hz	δ ¹³ C	J/Hz	δ ¹³ C	J/Hz
C(1)	149.77 (dddd)	10.2 (POC(1)) 9.9 (CCC(3)H) 9.9 (CCC(5)H) 4.5 (CC(2)H)	149.40 (br.m)	10.0 (POC) -8.0—9.0 (CCC(3)H) -8.0—9.0 (CCC(5)H) 3.6 (CC(2)H)	150.12 (dddd)	6.9 (POCC) 9.3 (CCC(3)H) 9.0—10.0 (CCC(5)H) ~4.0 (CC(5)H)
C(2)	121.37 (dd)	168.6 (CH) 7.8 (POCC)	121.23 (dd)	162.0 (CH) 8.0 (POCC)	120.79 (dd)	167.5 (CH) 7.0 (POCC)
C(3)	132.36 (dd)	169.9 (CH) 6.2 (CCC(2)H)	128.95 (ddd)	162 (CH) -4.5 (CCH) 1.5 (POCCC)	130.11 (dd)	164.0 (CH) 6.2 (CCCH)
C(4)	130,41 (br.dm)	11.7 (CCC(2)H) ~2—3 (CC(3)H) 1.2 (POCCCC)	130.44 (br.m)	1.5 (POCCCC)	126.90 (br.dt)	11.6 (CCC(2)H) 3.2 (CC(3)H) 3.3 (CC(5)H)
C(5)	129.48 (dd)	168.9 (CH) 5.4 (CCC(3)H)	132.64 (dm)	159.0—162.0 (CH)	127.37 (dd)	165.2 (CH) 5.7 (CCCH)
C(6)	123.07 (br.ddd)	18.2 (PCCC) ~7.4 (CCC(2)H) ~6.2 (CCC(8)H)	122.31 (d)	17.6 (PCCC) 7.5 (CCC(2)H) 7.5 (CCC(8)H)	123.54 (dd)	~15.7 (PCCC) ~7.5 (CCC(2)H) ~6—7 (CCC(8)H)
C(7)	155.82 (br.s)	1.3 (PCC)	154.30 (br.m)	2.0 (PCC)	150.52 (br.s)	
C(8)	115.68 (dd)	154 (PC) 171.7 (CH)	115.67 (dd)	154.2 (PC) 165.7 (CH)	117.12 (dd)	169.2 (PC) 163.3 (CH)
C(9)	136.80 (br.dt)	20.9 (PCCC) ~6.5 (CCC(11)H)	135.33 (dddt)	21.0 (PCCC) -7.0-8.0 (CCC(8)H) -6 (CCC(11)H) -1-2 (CC(10)H)	137.92 (br.dt)	20.4 (PCCC) ~7.2 (CCC(11)H)
C(10)	128.58 (dm)	162.1 (CH) 6.5 (CCC(10')H) 5.4 (CCC(12)H) ~3.5 (CC(11)H)	129.89 (dd)	155.4 (CH) 6.5 (CC(10*)H)	128.03 (br.m)	160.7 (CH) 6.5 (CCC(10')H) ~6.5 (CCC(12)H) ~3.5 (CC(11)H)
C(11)	129.22 (br.dd)	162.4 (CH) 6.7 (CCC(11')H)	132.30 (br.d)	159.0—162.0 (CH)	128.38 (br.d)	161.5 (CH) 6.4 (CCC(11')H)
C(12)	130.29 (br.dt)	162.0 (CH) 7.5 (CCC(10)H)	124.60 (tt)	9.5 (CCC(10)H) 3.0 (CC(11)H)	128.62 (br.dt)	161.4 (CH) 7.5 (CCC(10)H) 7.5 (CCC(10')H)

phosphorine 2a: the doublet at δ 6.31 (${}^{2}J_{PCH} = 24$ Hz) transforms into a singlet upon ¹H-{³¹P} selective spin decoupling. The chemical shift, δP 18, of the product 22 unambiguously attests to the presence of PIV. Thus, a phosphoryl group forms, ipso-substitution of the aromatic oxygen occurs, and the benzene ring is chlorinated in the reaction under discussion. The structure of 2 is also supported by the results of hydrolysis and fluorination of the product 2a. The latter reaction gives fluorophosphorine 4, whose ${}^{31}P$ NMR spectrum has a characteristic doublet (δP 9, ${}^{1}J_{PF} = 1064$ Hz).

The structures of compounds 2a,b were confirmed by the data from high-resolution mass spectrometry: intense peaks with m/z 310 and 388 correspond to molecular ions, and the main fragmentation processes correspond to formation of [M-C1]+ and [M-C1-PO]+ ions. The composition of the ions was confirmed by high-resolution spectra.

Experimental

The ¹H and ¹H—(³¹P) NMR spectra were recorded on a Varian HA 100D instrument (100 MHz) in CD₂Cl₂, and ¹H NMR spectrum of compound 2b was recorded on a Varian Unity 300 instrument (300 MHz) in CDCl₃. The ¹³C and ¹³C—(¹H) NMR spectra were obtained on a Bruker MSL-400 instrument (100.6 MHz) in DMF-d₇ (compound 3) and CDCl₃ (the others). The IR spectra were recorded on a Specord M-80 instrument for suspensions in vaseline oil. The mass spectra were measured on an MKh-1310 instrument combined with an SM-4 computer. Electron ionization energy was 70 eV, and collector current was 30 μ A. The substance was injected directly into the ion source at 100 °C. The exact values of molecular masses were determined automatically from reference peaks of perfluorokerosene with an accuracy of no less than 5×10^{-6} amu.

Reaction of o-phenylenedioxytrichlorophosphorane 1 with phenylacetylene. Phenylacetylene (40 mmol) in 10 mL of CH₂Cl₂ was added dropwise with intense stirring in an argon atmosphere to a solution of phosphorane 1 (20 mmol) in 50 mL of CH₂Cl₂ (-10 °C). The mixture was kept at 20 °C for 3 h, and the solvent was concentrated to half in vacuo. The residue crystallized after 1-2 days, and the crystals were washed with a cold mixture CH₂Cl₂-n-C₅H₁₂ (5:1) and dried in vacuo. 2-Chloro-2-oxo-4-phenyl-5,6-(4-chlorobenzo)phosphorin-3-ene (2a) was obtained, yield 87%, m.p. 122-124 °C. IR, v/cm⁻¹: 3000 (CH arom.); 1576, 1556, 1525 (C=C, C=C arom.); 1477, 1427, 1383, 1367, 1322 (δ (CH)); 1282 (P=O); 1264, 1250, 1211, 1194, 1168, 1134, 1093, 1073, 1060, 1014, 944, 914, 894, 876, 809 (POC, CCI); 792, 747, 733, 715, 683, 656, 600, 552, 521, 512 (PCI). MS, m/z $(I_{rel}(\%))$: 314 (12), 313 (9.0), 312 (62), 311 (17), 310 M⁺ $[C_{14}H_9Cl_2O_2P]^{+,*}$ (100), 285 (0.60), 283 (4.0), 281 [M-CHO]+ (5.5), 278 (2.2), 277 (13), 276 (7.8), 275 [M-CI]+ (40), 240 (2.4), 239 [M-CI-HCI]+ (16), 230 (7.7), 229 (4.1), 228 $[M-Cl-PO]^+$ (24), 164 (9.1), 163 $[C_{13}H_7]^+$ (12), 106 (0.90), 105 $[C_7H_5O]^+$ (10).

Reaction of phosphorane 1 with 4-bromophenylacetylene. 4-(4-Bromophenyl)-2-chloro-2-oxo-5,6-(4-chlorobenzo)phosphorin-3-ene 2b was obtained according to a similar procedure, yield 92%, m.p. 143—145 °C, δ P 19. (CH₂Cl₂). H NMR, δ : 6.32 (d, 1 H, PCH, ${}^2J_{PCH}$ = 23.3 Hz); 7.11 (d, 1 H, H(5), ${}^4J_{H(5)CCCH(3)}$ = 2.5 Hz); 7.19 (d, 2 H, H(10), ${}^3J_{H(11)CCH(10)}$ = 8.6 Hz); 7.22 (d, 1 H, H(2), ${}^3J_{H(2)CCH(3)}$ = 8.8 Hz, 7.39 (ddd, 1 H, H(3), ${}^3J_{H(2)CCH(3)}$ = 8.8 Hz, 4/H(5)CCCH(3) = 2.5 Hz, 5/POCCCH(3) = 1.6 Hz); 7.58 (d, 2 H, H(11), ${}^3J_{H(11)CCH(10)}$ = 8.6 Hz). IR, v/cm⁻¹: 1584, 1568, 1540 (C=C): 1504, 1424, 1400, 1392, 1350, 1316 (δ (CH)); 1296, 1220, 1152, 1124, 1112, 1048, 1008, 976, 928 (POC, P=O); 900, 856, 812, 730, 710. MS, m/z (I_{rel} (%)): 394 (7.7), 393 (7.4), 392 (49), 391 (18), 390 (100), 389 (11), 388 M⁺· [C₁₄H₈BrCl₂O₂P]⁺·(63), 361 (6.0), 359 [M-CHO]⁺ (3.8), 357 (5.2), 355 (21), 353 [M-CI]⁺ (18), 319 (2.8), 317 [M-CI-HCI]⁺ (2.7), 310 (4.2), 309 (3.4), 308 [M-HBI]⁺ (14), 307 (1.9), 366 [M-CI-PO]⁺ (9.8), 245 [C₁₃H₇CIOP]⁺ (1.6), 199 [C₁₃H₈CI]⁺ (5.1), 164 (10), 163 [C₁₃H₇]⁺ (18), 105 [C₇H₅O]⁺ (0.41).

Hydrolysis of phosphorine 2a. Water (0.18 mL) was added dropwise at 20 °C to a solution of phosphorine 2a (10 mmol) in 50 mL of dioxane. The reaction is exothermic and formation of a white precipitate was observed. The precipitate was filtered off, washed with ether, and dried. 2-Hydroxy-2-oxo-4-phenyl-5,6-(4-chlorobenzo)phosphorine-3-ene (3) was obtained, yield 89%, m.p. 228 °C. IR, v/cm^{-1} : 2500 (OH); 1530, 1550 (C=C); 1367, 1340 (δ (CH)); 1240 sh, 1190–1220 (P=O, POC); 1115, 1005, 967 (POC); 820 (CCl); 792, 747, 733, 715, 683, 656, 600, 552, 521, 512 (PCl). Found (%): C, 57.51; H, 3.88; Cl, 12.0; P, 11.07. $C_{14}H_{10}ClO_{3}P$. Calculated (%): C, 57.46; H, 3.44; Cl, 12.11; P, 10.58.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 94-03-08410a).

References

- 1. Reaktsii i metody issledovaniya organicheskikh soedinenii [Reactions and Methods for Studying Organic Compounds], Khimiya, Moscow, 1986, 26, 106 (in Russian).
- A. N. Pudovik and V. K. Khairullin, Usp. Khim., 1968, 37, 745 [Russ. Chem. Rev., 1968, 37 (Engl. Transl.)].
- G. K. Fedorova, Ya. P. Shaturskii, and A. V. Kirsanov, Zh. Obshch. Khim., 1965, 35, 258 [J. Gen. Chem. USSR, 1965, 35 (Engl. Transl.)].
- V. Fridland, Yu. K. Malkov, and A. I. Efremov, Zh. Obshch. Khim., 1978, 48, 361 [J. Gen. Chem. USSR, 1978, 48 (Engl. Transl.)].
- A. V. Dogadina, Yu. D. Nechaev, B. I. Ionin, and A. A. Petrov, Zh. Obshch. Khim., 1971, 41, 1662 [J. Gen. Chem. USSR, 1971, 41 (Engl. Transl.)].
- G. K. Fedorova, Ya. P. Shaturskii, and A. V. Kirsanov, Zh. Obshch. Khim., 1965, 35, 1984 [J. Gen. Chem. USSR, 1965, 35 (Engl. Transl.)].
- S. G. Seredkina, A. N. Mirskova, O. V. Bannikova, and G. V. Dolgushin, Zh. Obshch. Khim., 1991, 61, 1084 [J. Gen. Chem. USSR, 1991, 61 (Engl. Transl.)].
- V. E. Kolbina, V. G. Rozinov, A. N. Mirskova, N. V. Lutskaya, V. I. Donskikh, and M. R. Voronkov, Zh. Obshch. Khim., 1981, 51, 2147 [J. Gen. Chem. USSR, 1981, 51 (Engl. Transl.)].
- 9. J. Gloede, Z. Chem., 1982, 22, 126.
- V. F. Mironov, E. I. Gol'dfarb, P. P. Chernov, I. V. Konovalova, and A. N. Pudovik, Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 1456 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, 39, 1319 (Engl. Transl.)].
- 11. D. F. Ewing, Org. Magn. Reson., 1979, 12, 499.
- 12. Yu. Yu. Samitov, Stereospetsifichnost' konstant yadernogo spin-spinovogo vzaimodeistviya i konformatsionnyi analiz [Stereospecificity of Coupling Constants and Conformation Analysis], KGU, Kazan', 1994, 151 pp. (in Russian).
- J. Knuutinen, R. Laatikaineri, and J. Paasivirta, Org. Magn. Reson., 1980, 14, 360.
- 14. A. Yu. Denisov and V. 1. Mamatyuk, in Spin-spinovoe vzaimodeistvie ¹³C-¹³C i ¹³C-¹H v spektrakh YaMR organicheskikh soedinenii [¹³C-¹³C and ¹³C-¹H Spin-Spin Coupling in NMR Spectra of Organic Compounds], N1OKh SO AN SSSR, Novosibirsk, 1989, 353 (in Russian).

^{*} The peaks of ions containing the most abundant isotopes are indicated.